Gravitation as a thermodiffusion in the physical vacuum

 Zahid Zakir [1]


     An influence of matter on the vacuum energy density is considered and a treatment of gravitation as inhomogeneity of quantum diffusion is developed. A treatment of quantum theory as conservative diffusion [1] is briefly presented, where quantum fluctuations of energy and momentum of a classical particle occur because of interaction with physical vacuum. The increasing of particle’s mean energy at such fluctuations appears as quantum phenomena, while corresponding local decreasing of mean vacuum energy to the same value appears as gravitation. For one a particle the decreasing is extremaly small and in particle physics it can be neglected. However, when large number of particles are concentrated in a small volume, consequences of the vacuum energy decreasing become appreciable and they appear as gravitation. The diffusion treatment of quantum processes thus leads to the diffusion treatment of gravitation with natural synthesis of theories of both phenomena. New properties of inhomogeneous diffusion related by local decreasing of vacuum energy, such as slowering of fluctuations of particles with delay of intensity of processes (including redshift of frequencies), drift of particles toward slower fluctuations region and their diffusive acceleration, which is independent on mass of particles, are studied. Observable effects following from the new treatment are discussed.

PACS: 02.50.Ey, 03.65.Ta , 05.40.Jc  

Key words: quantum mechanics, diffusion, Brownian motion, kinetic theory of gases

Vol. 9, No 1, p. 33 –53, v1,      6 May 2014

Online: TPAC: 4874-037 v1,     6 May 2014;   DOI: 10.9751/TPAC.4874-037

[1] Centre for Theoretical Physics and Astrophyics, Tashkent, Uzbekistan

Add reply