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Abstract 

In 1939 Oppenheimer and Snyder (OS) have found an exact solution of the Einstein equations 

for a collapsing homogeneous dust star at the parabolic velocity of dust particles by transforming 

the Tolman solution in the comoving coordinates to a solution in the Schwarzschild coordinates r,t 

and matching on the surface of the star with the exterior Schwarzschild solution. However, despite 

the regularly citation of the OS paper, the meaning and significance of their solution have so far 

remained unappreciated and poorly understood, in addition their method has been forgotten. In the 

present paper it is shown that the OS method allows one to describe correctly from the astrophysical 

point of view the structure and evolution of the dust star as a whole on hypersurfaces of simultaneity 

t=const. A detailed derivation of the parabolic OS solution and solutions for hyperbolic and elliptic 

velocities is given. The plots of the proper time rate and particle trajectories r(t,R) in different layers 

are presented, visualizing the structure of the dust star. At large t, not only the surface quickly freezes 

outside the gravitational radius, asymptotically approaching it, but the particles in the internal layers 

also freeze at certain distances from the center, and their worldlines approach their own asymptotes, 

rapidly becoming almost parallel to the worldlines of particles at the center and on the surface. This 

shows that in the OS model the frozen star picture refers not only to the surface, but also to the 

structure of the collapsed dust star as a whole. Thus, at any finite moment of cosmological time the 

collapsed OS dust star appears as not a black hole, but as a frozar, an object by practically totally 

frozen internal structure.  
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Introduction 

In determining the structure of collapsing stars with a mass 3M M , when their 

surface is close to the gravitational radius 2gr GM  (G is the gravitational constant) and 

gravity dominates, there are still many ambiguities. In the simplest model - a spherical star 

with homogeneous dust matter and with a diagonal metric - the problem turned out to be 

exactly solvable (Friedmann, 1922; Lemaître, 1933; Tolman R., 1934) and, therefore, the 

internal structure of the such «ideal star» at each moment should have been well studied. 

However, these exact solutions were found under the condition of homogeneity in 

the comoving to the dust particles local frames which are mutually moving and, therefore, 

do not have a common hypersurface of simultaneity. At the same time, the determination 

of the structure of an extended object «at a given moment» means taking the positions of 

all its particles simultaneously, i.e. on a common hypersurface of simultaneity. In addition, 

the time of this hypersurface must coincide on the surface of the star with the world time 

of the exterior region. For these reasons, the existence of the solutions in the comoving 

frames is not enough for determining the structure of the star as a whole. 

In the case of a homogeneous dust star with a parabolic velocity of dust particles this 

problem was solved by OS (Oppenheimer & Snyder, 1939) by transforming the known 

exact solution in the comoving coordinates (Tolman R., 1934) into the Schwarzschild 

coordinates ( , , , )t r    (Schwarzschild, 1916) on the global hypersurface of simultaneity 

.t const  Unlike other attempts (Datt, 1938; Klein, 1961; Weinberg, 1972), where the 

diagonality of the such transformed metric is achieved by a local transformation of the 

coordinate time, in the OS method this is achieved by maintaining the world time of the 

exterior region. This ensures both to match correctly on the surface with the exterior metric, 

and to describe the star at every moment of the world time as a totality of simultaneous 

events. Since then, the OS solution has been used as a standard model for normalizing and 

testing more complicated models of relativistic stars. 

The aim of the present paper is to develop the OS model by its more detailed and 

consistent formulation, the determination of asymptotes at 
gt r  not only for the metric, 

but also for the trajectories of the star’s particles with the visualization of these trajectories, 

and the derivation of exact interior solutions in the Schwarzschild coordinates for the 

elliptic and hyperbolic velocities. 

In Section 1 the main relations for particle trajectories in the Schwarzschild field and 

the Tolman solution for the dust ball are discussed. In Section 2, the exact solutions by the 

OS method for all three velocity regimes are derived. In Section 3, the structure and 

evolution of the dust star are studied and the plots of the worldlines are presented, clearly 

showing the structure of the star at a given time t and at the asymptotes t  . In the 

Appendices a parametrized representation of the trajectory equations and the derivation of 

the solutions for the OS auxiliary functions ( , )y R r  are presented. 
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1. Trajectories in the Schwarzschild field and Tolman's solution 

for the dust ball  

1.1. Trajectories of particles in the Schwarzschild field 

The space-time interval outside and on the surface of the spherical star 
br r  (where 

br  is the circumferential radius of the surface) in the static coordinates is given by the 

Schwarzschild solution: 
2 2 1 2 2 2(1 / ) (1 / ) ,g gds r r dt r r dr r d                               (1) 

where 
2 2 2 2sind d d     . At the radial falling of test particles in this field their 

local velocities have the form: 

 

2
2

2 2

1
.

(1 / )g

dr
v

r r dt



                                                 (2) 

The energy conservation condition for freely falling particles in this static field gives: 

 
2

1 /
1 ( ),

1 ( )

gr r
f R

v r


 


                                                 (3) 

where the form of ( )f R  is fixed at the initial moment at r R . 

From these basic expressions, then we find the trajectory functions for test particles 

outside the star for three kinds of velocities - parabolic ( 0f  ), hyperbolic ( /gf r R ), 

and elliptic ( /gf r R  ). They are distinguished by the fact that they correspond to a 

constant curvature space and an initially homogeneous set of test particles remains 

homogeneous in the future for the same intervals of the local proper time. The 

hypersurfaces of «one-age» for this reason are also the hypersurfaces of homogeneity. 

a. Parabolic velocities. 

The parabolic velocity case with 0f   corresponds to the velocity which would be 

achieved at a free fall from the rest at r . The energy conservation condition for 

particles (3) gives in this case  

 
1/2 1/2

2

1 /
1, / .

1

g

g

r r
v r r

v


  


                                        (4) 

For the proper time interval of the particles it follows from (1), (2) and (3):  
2

2 2

2

1
1 ,

1 /g g

dr r
d dr

r r v r


 
   

  
                                    (5) 

By defining the initial positions of particles at 0   as r R , we obtain from (5): 
2/3

3/2 3/2 3/2 1/2

1/2

2 3
( , ) ( ) , ( , ) .

3 2
g

g

R r R r r R R r
r

  
 

    
 

            (6) 

For the derivatives /r r     and ' /r r R    we have from (5)-(6):  
1/2 1/2

1/2 1/2
, ' .

gr R
r r

r r
                                                     (7) 

For the world time interval t it follows from (2) and (3): 

 

( ) 3/2 3/2

0 1/2 1/2

( )

1 1
( ) ,

r t R

g g g gR r t

dr r dr r
t t R

r r r r r r
   

                                 (8) 
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where 0( )t R  is a value of t  corresponding to the moment 0   for the layer R. The 

integration of (8) gives the trajectory function ( , )r t R  in the implicit form: 

1/2 1/2 1/2 1/2

3/2 3/2 1/2 1/2 1/2

0 1/2 1/2 1/2 1/2 1/2

2
( ) ( ) 2 ( ) ln .

3

g g

g g

g g g

r r R r
t t R R r r R r r

r r r R r

  
          

     (9) 

From (9), using (7), we find the derivative t : 

 .
g

r
t

r r



                                                   (10) 

For the calculating 't , an explicit form of 0( )t R  is required and in Section 2.2 it will be 

found from the metrics diagonality condition in the comoving frame of reference. 

b. Hyperbolic and elliptic velocities. 

The hyperbolic velocities correspond to a finite velocity 2 0v   at r   and in (3) 

they correspond to the choice ( ) / 0gf R r R  . The elliptic velocities correspond to 

falling from the rest ( ) 0v R   at a finite distance r R   at the initial moment 0   

and the energy conservation condition (3) gives in this case ( ) / 0gf R r R   . Then both 

cases will be considered together and the sign (+) will be for the hyperbolic, and the sign 

(-) – for the elliptic velocities. 

Thus, from (3) we obtain: 

 
2

1 /
1 ,

1

g gr r r

v R


 


                                              (11) 

 
2 , .

g

g

rR r
v A A

r R r


  


                                    (12) 

From (1) - (2) and the expressions for the velocity (12) we find for the proper time interval 

of the particle:  
2 2

2

2

1
1 ,

1 /g g

dr R r dr
d

r r v r R r


 
    

  
                               (13) 

from which it follows the relationship between   and r along any trajectory ( , )R r : 

1/2 1/2

1/2 1/2

( )

,
( )

R

g r

R dr r

r R r


 
                                             (14) 

1/2 3/2 1/2 1/2
1/2 1/2

1/2 1/2 1/2 1/2

( )
2 [ ( )] ln , 0

(1 2 )g g

R R r R r
R r R r f

r r R


  
         

   (15) 

1/2 3/2
1/2 1/2 1/2

1/2 1/2
[ ( )] arccos( / ), 0.

g g

R R
r R r r R f

r r
                           (16) 

The derivative r  follows from (13): 
1/2

1/2

1/2
(1 / ) ,

gr
r r R

r
                                              (17) 

while ' /r r R    we find from (15) and (16) by using the condition ' 0  :   
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1/2 1/2
1/2 1/2

1/2

3 3 (1 / ) ( / )
' 2 ln (1 / ) , 0,

2 2 2 1 2

r r R r R
r r R f

R

  
       

 
  (18) 

1/2

1/2 1/23 3
' 1 arccos( / ), 0.

2 2 2

r R
r r R f

R r

 
     

 
                                    (19) 

Notice that the logarithmic term in (18) can be written across arccosh
1/2[( / ) ]r R . 

For the world time interval t, it follows from (2) and (12) that: 

 

3/2

1/2 1/2

( )

1
,

( )( )

R

gr t

dr r
t

A r r R r


                                          (20) 

and the calculation of the integral gives a relationship between t and r along the trajectories 

( , )t R r : 

1/2 1/2

0 1/2

1/2 1/2
1/2 1/2

1/2

[ ( )] [ ( )]
( ) 2 ln

[ ( )]

( )
( 2 ) ln [ ( )] (1 / ) , 0

g g

g

g

g g

r R r r R r
t t R r

R r r

r R r
R r r r R R r f

R

  
  



  
      
 

        (21) 

 

1/2 1/2

0 1/2

1/2

1/2 1/2 1/2

[ ( )] [ ( )]
( ) 2 ln

[ ( )]

( 2 )arccos( / ) [ ( )] 1 , 0

g g

g

g

g

g

r R r r R r
t t R r

R r r

R
R r r R r R r f

r

  
  



 
       

 

            (22) 

From these equations for the trajectory, taking into account (17) - (19), we find t : 

 

1/2 1/2

1/2

[ ( )] (1 / )
.

[ ( )] 1 / 1 /

g g

g g g

r R r r Rr
t

r R r r r r r

 
  

  
                           (23) 

в. A relation of the proper time to the world time and its asymptotes. 

The times   and t are two parametrizations of the same events along the same 

worldline of the particle ( , ) ( , )r r R r t R   and, therefore, these two times are mutually 

related, and irreversible gravitational dilation of   w.r.t. t is the experimental fact (see 

(Okun, Selivanov, & Telegdi, 2000)). 

The relation between   and t in the implicit form can be obtained from (9) and (16) 

by calculating ( , )t r R  and ( , )r R  at the same values of r and R. At the same time, while 

gr r  both ( , )t r R  and ( , )r R  describe the same event on the same worldline (at fixed 

angles ,  ). Therefore, if the worldline ( , )t r R  asymptotically approaches gr  by never 

crossing it, then the worldline ( , )r R  also asymptotically approaches gr  and also does not 

cross it. The proper time at t   and gr r  only asymptotically freezes, tending to the 

moment of freezing g , which we find from (6), (15), and (16): 

3/2 3/2

1/2

2
( ), 0,

3
g g

g

R r f
r

                                                                        (24) 
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1/2 1/21/2 3/2
1/2 1/2

1/2 1/2 1/2 1/2

( )
2 [ ( )] ln , 0,

(1 2 )

g g

g g g

g g

r R rR R
R r R r f

r r R


  
         

   (25) 

3/2
1/2 1/2 1/2

1/2
[ ( )] arccos( / ), 0.g g g g

g

R
r R r r R f

r
                                     (26) 

The plots of the dependences ( , )t R  for all three velocities are shown below in Fig. 2, 

where the positions of the asymptotes g  are shown also.     

1.2. Tolman's general solution for a dust star and homogeneity 

Inside the dust star ( bR R ), the line element in the comoving local frames of 

reference can be written in the form: 

  
2 2 2 ( , ) 2 2 2( , ) ,Rds c d e dR r R d                                  (27) 

where 2 ( , )r R   is the length of a circle around the star. 

Tolman’s general solution for the Einstein equations with the such metric (Tolman 

R., 1934)  (in the notation of (Landau & Lifshits, 1994)) has the form: 

 
2 2

2

'
' / (1 ), / , 8 .

'

F
e r f r f F r G

r r

                      (28) 

where 1 0f  ,   is the energy density of the dust matter. It contains two unknown 

functions ( )f R  and ( )F R , and thus in order to find the exact solutions it is necessary to 

specify the physical conditions. 

For our purposes, homogeneity is the first such condition. In local comoving 

reference frames, where Tolman's solution is valid, the homogeneity condition means that 

for the same values of proper time (for the «one-age» events)   does not depend on the 

spatial coordinates: 

( ).                                                            (29) 

This can be achieved by the choice of a homogeneous distribution at the initial moment 

0   and by choosing one of the three special velocities that preserve the homogeneity 

during the time evolution, since they correspond to the constant curvature spaces. 

The integration of (28) then gives: 

 
1/2

.
( / )

dr

f F r
  

                                               (30) 

In addition in the exterior region gF r . 

For the parabolic motion ( 0f  ) we obtain from (28) - (30):  

2/3
1/2 1/2

3/2 3/2 3/2

1/2 1/2

2 3
( ), , .

3 2

F F
R r r R r

F r
 

 
      

 
          (31) 

In the elliptic case, f  is determined from the vanishing of the velocity at r R : 

 
2( ) 0, 0.

F F
r R f f

R R
                                          (32) 

In the hyperbolic case, it should be the same value of f , but with the opposite sign: 

/f F R . 

Thus, in the hyperbolic and elliptic cases we have for 
2r : 
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1/21/2

1/2
1 .

F r
r

r R

 
   

 
                                           (33) 

The integration of (33) is analogous to (14) - (16) and gives: 
1/2 3/2 1/2 1/2

1/2 1/2

1/2 1/2 1/2 1/2

( )
2 [ ( )] ln , 0

(1 2 )

R R r R r
R r R r f

F F R


  
         

   (34) 

1/2
1/2 1/2 1/2

1/2
[ ( )] arccos( / ) , 0.

R
r R r R r R f

F
                                 (35) 

1.3. Two additional consequences of homogeneity 

Thus, the condition to be comoving leads to the diagonal metric (27) with which the 

Einstein equations have an exact solution (28) by two unknown functions f and F, and then 

the homogeneity condition and the choice of one of the three special velocities allow to 

determine f. 
At the first look it seems that there remains the arbitrariness in the determination of 

the second of the unknown functions F. Below we show that in reality there is no such 

arbitrariness, and by the above accepted refinements of physical conditions it is fully 

determined not only f, but F also. In the OS paper this was shown for parabolic velocities, 

and here we show that the form of F is the same for all three types of special velocities. 

For this purpose, from (28) and the homogeneity condition (29), we obtain the 

following relations ( 8 / 3G  ): 
2 3' 3 ( ) ' ( )( ) ',F r r r                                           (36) 

3
3 3 3

3
( ) (0) (0) .b

b

R
F r R R

R
                                    (37) 

Further, taking into account 
32 (0)g br GM R  , we arrive at the expressions: 

3 3

,3 3
( ) , ( ) (0) .g g R

b

R R
F R r r

R r
                                (38) 

Thus, the first additional consequence of homogeneity is that the form of F inside 

the star is uniquely determined from (28) and (29), and the form of F is the same for all 

three special velocities, since in deriving of (38), in contrast to OS, the concrete form of f 
was not used. 

Knowing f and F, now we can calculate from (31) and (33) not only r , but also 'r , 

if we again use (36) - (38). At first, from (36) - (37) we obtain: 
3

2 3

3
' ( ) ' (0) ' 3 ',g

b

R
F r r R r r r

rR
                            (39) 

and then, equating this to (38), we arrive at two expressions for 'F :  
3 2

3 3

3
' 3 ' ,g g

b b

R R
F r r r

rR R
                                            (40) 

from which we find: 

' .
r

r
R

                                                           (41) 

Thus, the second additional consequence of homogeneity is that this condition allows 

one to find 'r  also, which is the same for all three special velocities. 
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2. A homogeneous dust star on a hypersurface of simultaneity 

Tolman's solution inside the dust star in the comoving frame of reference (28), with 

taking into account the consequences of homogeneity (38) and (41), naturally coincides 

with earlier Friedmann's cosmological solution obtained under the same conditions. In 

contrast to cosmology, in astrophysics one deals with a compact object embedded in the 

static Schwarzschild space-time (1). Therefore, for the matching with the exterior metric, 

the interior solution must be expressed in the same coordinates as the static metric. 

This is exactly what was done in the OS paper, where they able to find the exact 

solutions for the interior metric and trajectories in terms of the coordinates ,r t , and also 

to sew them on the surface with the exterior static metric in the particular case when: 

a) the dust ball is homogeneous in the local comoving reference frames; 

b) the dust particles fall with the parabolic velocity and ( ) 0f R  ; 

c) Tolman's solution is transformed into the Schwarzschild coordinates ,r t . 

Further, we give the details of the calculations in the OS method not only for the parabolic, 

but for the hyperbolic and elliptic velocities also. 

2.1. The metric and trajectories in the exterior region  

a. Parabolic velocities. 

Let us consider the falling test particles outside the star bR R . Since the metric in 

the exterior region in the static reference frame is known and given by the Schwarzschild 

metric (1), we proceed from it and transform it from r, t to ,R  . We express the intervals 

of r, t across the intervals of ,R   in the form:   

' , ' .dt t d t dR dr rd r dR                                  (42) 

The line element (1) then turns to ( 1 /gr r   ): 

2 2 1 2 2 2

2 1 2 2 1 2 2 2 1 2 2( ) ( ' ' ) 2( ' ') .

ds dt dr r d

t r d r t dR t t rr d dR r d

 

       



  

    

       
(43) 

The expressions for the metric components in the coordinates ,R   are also known 

from (27) - (28) and together with (43) they give two equations for determining  t , 't , as 

well as the metric diagonality condition: 

  
2 1 2

00( , ) 1,g R t r                                                  (44) 

1

01( , ) ' ' 0.g R t t rr                                                (45) 

1 2 2 2

11( , ) ( ' ' ) ' ,g R r t r                                       (46) 

Taking into account that gF r  outside the star, from (4), (44) and (46) the previous 

expressions (7) and (10) for r , 'r  and t  are follow. From (46) we find the expression for 

't  by taking into account 
1/2 1/2' /r R r  from (41): 

    

1/2 1/2( ) ( )
' ' .

g g

g g

rr r R
t r

r r r r
   

 
                                        (47)  

This expression satisfies the diagonality condition (45), which, taking into account (10) for 

parabolic velocities, takes the form: 

'
' ,

t
r r

t
                                                          (48) 
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 Next, calculating from (9) and equating the result to (47), we arrive at the equation 

for finding 0 't : 

1/23/2 3/2

0 1/2 1/2

( )'
' ' ',

( ) ( )

g

g g g g g

r rR r r
t t r

r R r r r r r r
    

  
                    (49) 

which after substitution 1/2 1/2' /r R r  gives: 
1/2

0

( )
' ,

g

g

r R
t

R r
 


                                                  (50) 

  

1/2 1/2

1/2 1/2

0 1/2 1/2
( ) 2 ln .

g

g g

g

R r
t R r R r

R r


  


                               (51) 

Finally, substituting (51) into (9), we obtain the trajectory function ( , )r t R  in the form as 

it was used in the ОС paper: 

  

1/2 1/2

3/2 3/2 1/2 1/2

1/2 1/2 1/2

2
( ) 2 ln .

3

g

g g

g g

r r
t R r r r r

r r r


   


                     (52)  

In the plots of the trajectories ( , )r t R  and ( , )r R  (Fig. 1), it is clear that there is a 

one-to-one correspondence between the events on both curves ( , ) ( , )r t R r R , and 

therefore both curves are asymptotic. At t   both they are asymptotically approach the 

gravitational radius ( , ) gr t R r  and [ ( , )] gr t R r  . 

The relation between the two types of time ( , )t R  follows from (6) and (52): 

3/2 1/2 1/3 1/2

1/2 3/2 1/2 1/3

3/2 1/2 1/3 1/2

( 3 / 2)
2 ( 3 / 2) ln .

( 3 / 2)

g g

g g g

g g

R r r
t r R r r

R r r


 



  
        

     (53) 

On the plot for ( , )t R  (Fig. 2) the points with .t const  correspond to simultaneous 

events, and with .const   - to one-age ones. At t   and 
gr r  the moment of 

freezing of the proper time 
g  , which appear as asymptotes in Fig. 2, to which the 

proper times tend, we find from (6): 

3/2 3/2

1/2

2
( ) ( ).

3
g g

g

R R r
r

                                           (54) 

b. Hyperbolic and elliptic velocities. 

The transformation of the Schwarzschild solution (1) from r,t to ,R   the hyperbolic 

and elliptic velocities is analogous to the parabolic case (42) - (45) with the difference only 

in the spatial component of the metric: 

1 2 2 2

11( , ) ( ' ' ) ' ,g R r t r                                     (55) 

where 
2 2' ' / (1 / )gr r r R  . For r and t  from (3) and (44) follow: 

1/21/2 1/2

1/2

(1 / )
1 ,

1 /

g g

g

r r Rr
r t

r R r r

 
    

 
                                (56) 

From (55) we obtain an expression for 't  satisfying the diagonality condition (45): 
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1/2
1/2

2

( ) '
' ' .

g

g g

r r R r rr
t r

r r R r t

 
      

                                  (57) 

Calculating 't  from the solution (21) for the hyperbolic velocities and equating the 

result to (57), we arrive at the equation for 0 't : 

0 1/2 1/2

/3
' ,

2 (1 / )

g

g

R r
t

R r



                                                   (58) 

the solution of which has the form: 
1/2 1/2

0 2 ( 2 / )1 .( ) )(g gt R r R rR                                          (59) 

 Substituting this into (21), we obtain the trajectory function in the hyperbolic case: 

  

 

Fig 2. The relationship ( , )t R  between the 

proper time   and world time t for the particles 

from Fig.1. Dotted lines are asymptotes 
g   

from (54), (61) - (62) to which the proper times 

  tend at 
g

t r . It can be seen that the values 

of   only approach 
g , never reaching it at 

t  , and the surface remains outside 
g

r  also 

in terms of  too. The events on the worldline 

( )r r   in the bottom Fig.1 are the same 

events as in the worldline ( )r r t  in the upper 

Fig.1, i.e. the points of two parametrizations of 

the same  worldline correspond to each other 

one to one. Thus, the worldlines ( )r   on the 

lower Fig. 1 also are asymptotic and do not cross 

gr . 

Fig.1. The worldline of a particle on the surface of the 

star ( ) ( )r r t r    in terms of t (upper figure) and 

  (lower  figure) falling from 3.5R    at  0   (in 

units 
g

r ). A thick line corresponds to the parabolic, a 

line close to it – to the hyperbolic and an upper one to 

the elliptic velocities.   
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1/2 1/2

1/2

1/2 1/2
1/2 1/2 1/2

1/2

[ ( )] [ ( )]
2 ln

[ ( )]

( )
( 2 ) 2 ln [ ( )] (1 / ) , 0.

g g

g

g

g g

r R r r R r
t r

R r r

r R r
R r r r R R r f

R

  
 



   
        

  

 (60) 

 The trajectory function (22) for the elliptic velocities remains the same, since the 

expression 't  from (57) gives 
0( ) 0t R   for all R. 

The plots of the trajectories ( , )r t R  and ( , )r R  are also shown in Fig. 1. It can be 

seen from the Fig. 1 that in each case both curves are asymptotic, i.e. at t   both they 

are only approaching the gravitational radius ( , ) ( , ) gr t R r R r  . 

At t   and 
gr r  the freezing moments of proper times 

g   at the 

hyperbolic and elliptic velocities we find from (15) and (16): 
1/2 1/21/2 3/2

1/2 1/2

1/2 1/2 1/2 1/2

( )
2 [ ( )] ln , 0

(1 2 )

g g

g g g

g g

r R rR R
R r R r f

r r R


  
         

   (61) 

1/2 3/2
1/2 1/2 1/2

1/2 1/2
[ ( )] arccos( / ), 0.g g g g

g g

R R
r R r r R f

r r
                             (62) 

From the plot of the relation of two times ( , )t R  in Fig. 2 we see that at t   the proper 

times of the layers R tend to their asymptotes ( )g R  from (61) - (62). 

In the literature it is often used a parametric representation for variables and 

trajectory equations, and in Appendix 1 the main results are also presented in the such form. 

2.2. The metric and trajectories in the interior region 

In the previous Section, the solutions in terms of r,t coordinates were obtained in 

terms of ,R  . Here, following OS, we will perform the inverse transformation - from the 

Tolman’s interior solution (28) in terms of ,R   we will obtain the solution in terms of the 

Schwarzschild coordinates r,t. This is necessary both for matching with the exterior metric 

(1) and for determining the instantaneous structure of the star as a whole on the 

hypersurface of simultaneity t const . 

The line element inside the star can be in general with a non-diagonal metric. 

However, firstly, this metric must be diagonal on the surface to be matched with the exterior 

metric. Secondly, the instantaneous structure of the star as an extended object must be given 

on a single hypersurface of simultaneity coinciding on the surface with the hypersurface of 

world time. This also suggests the existence of clocks in the entire volume of the star, which 

are synchronized and show the same world time as on the surface. 

All this is realized in a natural way only for the diagonal metric and it is very difficult, 

if at all possible, for a non-diagonal metric. Therefore, we need to test the possibility of the 

existence of an exact solution with the diagonal metric. If such a solution can be found, 

then all other solutions with the non-diagonal metric will turn out to be just the same simple 

solution, but transformed into more inconvenient or inadequate coordinates. 

Thus, we write down a line element with diagonal metric:  
2 ( , ) 2 ( , ) 2 2 2 , ,r t r t

bds e dt e dr r d r r                                   (63) 

the matching on the surface of which should give 
( , ) ( , )

1 /b br t r t

g be e r r
 

   . From (42) 

it follows: 
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2 2 2 2 2

2 2 2 2 2 2 2 2( ) ( ' ' ) 2( ' ') .

ds e dt e dr r d

e t e r d e r e t dR e t t e rr d dR r d

 

      

    

       
  (64) 

Notice that the OS method differs from other attempts to obtain solutions with 

diagonalization of the interior metric 01( , ) 0g r t   in that the diagonality of the required 

metric is considered as the additional requirement and further exact solutions are found that 

satisfy this condition. The coordinate time t is the same for all layers and coincides on the 

surface with the exterior world time. 

In accordance with (27) we obtain the conditions: 

  
2 2

00( , ) 1,g R e t e r                                                    (65) 

2 2 2

11( , ) ( ' ' ) ' ,g R e r e t r                                         (66) 

01( , ) ' ' 0.g R e t t e rr                                                   (67) 

where 
2 2' ' / (1 )r r f  . The first two of them give for two components of the metric: 

  

2 2 2 2 2 2

2 2 2 2 2 2 2 2

' ' ' '
, ,

' ' ' '

t t r r r r
e e

t r t r t r t r

  
 

 
                                (68) 

and the third one (67) expresses the diagonality of the initial metric, which, taking into 

account (68), has the form: 
2 2 2 2 2 2

01 2 2 2 2

'( ' ' ) ( ' ' ) '
0.

' '

t t r r r t t r rr
g

t r t r

  
 


                            (69) 

Writing this condition as an equation for 't : 
2

2 2 2' ' ' 1 ' 0,
1

r
t r t tr t rr

f

 
    

 
                                    (70) 

we obtain two solutions: 

 2 2'
' [1 / (1 )] [1 / (1 )] .

2

tr
t r f r f

r
                                  (71) 

The first one of these (with a plus) ' '/t t r r  is unphysical, since it diverges at 0r  , 

and the second one (with a minus sign) gives the diagonality condition of the interior 

metric: 

' '
.

1

t rr

t f



                                                         (72) 

Excluding 't  by means of (72), we simplify the expression for the metric (68):   

2

1 1
, .

1 / (1 / )

f
e e

F r t F r

  
 

 
                                  (73) 

a. Parabolic velocities. 

Setting 0f   in (72) we obtain the diagonality condition for the parabolic 

velocities: 

'/ ' .t t r r                                                         (74) 

The OS solution for the metric [4], following from (73) and (74), has the form:   

2 2 2

1 1
, .

1 (1 )
e e

r t r

  
 

                                      (75) 
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Thus, 'r  is known from (41), the expressions for ( , )r R , ( , )r R  and r  we obtain 

from (31) and (38): 
2/3

1/2 1/2

,3/2 3/2

1/2 3/2 1/2

,

32
( ), ( , ) 1 , .

3 2

g g R

g R b

r r
R r r R R r

r R r
  

 
       

 
        (76) 

To determine the trajectory equation ( , )r t R  in the OC method (Oppenheimer & 

Snyder, 1939), it is necessary to introduce a new variable y: 

( ),t M y                                                       (77) 

where the form of the function M is determined from the matching condition with the 

exterior metric. The diagonality condition (74) then takes the form: 
1/2

,( )' '
' .

g Rr rt y
rr

t y R
                                         (78) 

The solution of this equation for y, found by the OS, has the form: 
2

2

1
( , ) 1 .

2

b

b g

R R
y R r

R Rr


 
   

 
                                     (79) 

The derivation of this solution is presented in Appendix 2. 

On the surface ( ) /b b gy y R r r   and here the function ( )bM y  must coincide 

with the right-hand side of (52). Therefore, by substituting bR R  and gr r y  in (52), 

OS have obtained the trajectory function for the particles inside the star: 

  

1/2
3/2 3/2 3/2 1/2

1/2 1/2

2 1
( ) 2 ln .

3 1
b g g g

g

y
t R r y r y r

r y


   


                        (80) 

For t  и 't  this equation, by taking into account 
2' / by R R  и 

1/2( / )g by R rr R  , gives: 

1/23/2 3/23/2 3/2

2

'
, ' .

1 1 1 1

g g g g

b b

r y y r R r y y r Ry y
t t

y R r y y R y

 
       

    
       (81) 

and the diagonality condition (78) is satisfied. 

b. Hyperbolic and elliptic velocities. 

In this case, from (66), (32) and (33) we have: 

 

1/2

, , 1/2

1/2
, (1 / ) .

g R g Rr rF
f r r R

R R r
                                 (82) 

Substituting this into (73) and (82), we obtain:   

,2

, ,

1 /1
, .

1 / 1 /

g R

g R g R

r R
e e t

r r r r

  


 
 

                               (83) 

By introducing the variable y as in (77), we write the diagonal condition (72) in the 

form: 
1/2

, 1/2

, ,

( )' ' '
(1 / ) .

1 /

g R

g R g R

r rt y rr
r R

t y r R R r
    

 
                   (84) 

The solutions of this equation with respect to y have the form: 
1/2

,

1/2

(1 / ) (1 / )
( , ) ln ,

(1 / )

g Rb

g g b

r R r RR
y R r

r r R

  
     

                          (85) 
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1/2
/

1/2

,

(1 / )
1 .

(1 / )

g byr Rg b

g R

r R
r R e

r R

 
     

                                 (86) 

The derivation of these solutions is also presented in Appendix 2. At bR R : 

( , ) ( / ) ln(1 / ).b b b g by R r y R r r R                                 (87) 

On the surface, the function ( )bM y  must coincide with the right-hand side of (22). 

Making in (22) the substitutions bR R  and yr r , where yr  is determined from the 

correspondence with (87) as:   

[exp( / ) 1],b g br R yr R                                          (88) 

we obtain the trajectory function ( , )r t R  in the implicit form ( , )t R r  ( /b gb R r ): 

1/2 1/2

1/2

1/2
1/2 1/2

1/2 1/2

1/2

[ ( )] [ ( )]
2 ln

[ ( )]

( )
( 2 ) 2 ln [ ( )] 1 , 0,

b g g b

g

b g

b b
b g b

b g

r R r r R r
t r

R r r

r R r R
R r r r R f

R r

 



 
 

  
 



    
           

    

(89) 

 

1/2 1/2

1/2

1/2

1/2 1/2 1/2

[ ( )] [ ( )]
2 ln

[ ( )]

( 2 )arccos( / ) [ ( )] 1 , 0

b g g b

g

b g

b
b g b b

g

r R r r R r
t r

R r r

R
R r r R r R r f

r

 



  

  
 



 
       

 

                  (90) 

The derivative t  have the form: 

 

1/2 1/2 1/2
/

1/2 1/2 1/2

,

( ) (1 / )
,

( ) 1 / (1 / )

g byr Rb g g g b

g b g b g R

r R r Rr r Rr
t r y e

r R r r r R r R

 


 

 
  

  
        (91) 

3. The internal structure and evolution of a dust star 

3.1. Trajectories of particles in layers and their asymptotes 

a. Parabolic velocities. 

The plots of the trajectories of the dust particles inside the star ( , )r t R  for the 

parabolic solution of OS (79) - (80) are shown in Fig. 3-4. In Fig. 4 shows the asymptotes 

( , )r R  to which the trajectories of the particles of the layers tend at t  . They are 

parallel to the worldline of the center and are placed almost equidistantly, condensing only 

near the surface. The closure is insignificant and concerns only those layers that were 

initially close to the surface. An expression for the asymptotes of worldlines inside the star 

can be found in the following way. 

At t   the surface of the star asymptotically approaches the gravitational radius 

b gr r  and in (9) it dominates the growing logarithmic term, which gives on the surface: 

1/2 1/2
/

1/2 1/2 1/2 1/2 2

1
ln , 1 ,

( ) 4

gt rb g b g b
g

b g b g g

r r r r r
t r e

r r r r r

    
           

           (92) 

/
( ) (1 4 ) .gt r

b g gr t r e r


                                          (93) 
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In the internal layers, the logarithmic contribution to (80) also grows, but now at 

1y   and this gives for the asymptotes of the layers ( , ) ( )r t R r R  the equation: 

2

2

1
( , ) ( ) 1 ( ) 1,

2

b
t

b g

R R
y t R y R r R

R r R
  

 
     

 
                 (94) 

from which we find the required result: 
2

2

3
( ) 1 .

2 3

g

b b

r R
r R R

R R


 
  

 
                                      (95) 

As we see, the lines of asymptotes of the internal layers of the star are located almost 

equidistant (Fig. 4) and only the layers near the surface are densified due to the factor 
3 3/ 2g br R R . 

The proper time on each layer freezes at ( )R , the value of which we find by 

substituting ( )r R  into (76): 

3/21/23/2 2

1/2 1/2 2

32
( ) 1 .

3 2 3

gb

g b

rR R
R

r R


 
   

 
                               (96) 

The center freezes before all layers the moment (0)  and the surface freezes later than 

all layers at ( )bR : 

3/2 3/2 3/2

3/2 3/2 3/2

2 3 2
(0) , ( ) 1 .

3 2 3

b b
g b g

g g

R R
r R r

r r
  

   
         

   

                 (97) 

  
Fig.3.  The OS worldlines of the dust star’s particles 

along the star’s diameter at the parabolic velocity 

and 3.5bR   at 0   (in units 
gr ) according Eqs. 

(79)-(80) At large t the worldlines remain timelike, 

the surface freezes outside the gravitational radius, 

the internal layers freeze near own asymptotes given 

by Eq. (95) 
 

Fig. 4. The worldlines of particles in the layers 

of the dust ball from Fig.3. At 
gt r  a surface 

asymptotically approaches 
gr , but not cross it. 

Inner layers freeze near their asymptotes from 

Eq. (95) shown by dotter verticals. 
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The interval of proper time, during which all the layers of the dust star become 

frozen, is therefore equal to the difference between the moments of freezing of the surface 

and the center: 
3/2

3/2

2 3
( ) (0) 1 0.558 .

3 2
b g gR r r  

 
    

 
                       (98) 

For a star with 10M  and 30gr km the difference between the moments showing 

by frozen local clocks on the surface and at the center will be about 0.1 milliseconds. In the 

world time this interval, of course, is sufficiently larger. 

Let us consider the dependence on t of the basic variables at large t. From the 

asymptotes t: 

1/2 2

1 1
ln ln ,

( 1) 4
g g

y y
t r r

y

   
    

   
                             (99) 

we obtain: 
2

/

2

1
1 1 4 ,

2

gt rb

b g

R R
y r e

R Rr

 
    

 
                              (100) 

2
/

2

3 8
1 .

2 3 3

gt rg

b b

r R
r R e

R R

 
  

 
                                      (101) 

Substituting this into (76), we then find the dependence of the moments of proper 

time inside the star ( , )t R  from t : 
3/21/23/2 2

/

1/2 1/2 2

32 8
1 .

3 2 3 3

gt rgb

g b

rR R
e

r R


 
    

 
                           (102) 

At t   this expression goes into (96). 

b. Hyperbolic and elliptic velocities. 

The trajectory plots ( , )r t R  in accordance with the solutions for the hyperbolic and 

elliptic velocities (85) and (89) - (90) are shown in Fig. 5-6. It can be seen from the figures  

that at t   the trajectories of the particles in different layers R, as in the parabolic case, 

also tend to their own asymptotes ( , )r R . Let us find these asymptotes. 

At t   in these two cases also b gr r  and in (89) - (90) the increasing 

logarithmic terms dominate, which gives: 

 

ln [exp( / ) 1] 1 ln 1 ,b
g g b g

g g

R r
t r yr R r

r r


   

             
   

         (103) 

[exp( / ) 1].b g br R yr R                                                                (104) 

The asymptotes y y  at t   follows from (103):  

[exp( / ) 1] 1,b
g b

g

R
y r R

r
                                         (105) 

ln 1 .
gb

g b

rR
y

r R


 
   

 
                                             (106) 
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Substituting this into (86), we find the asymptotes for the internal layers ( )r R : 

 

3

3 1/

/

2 2

2(1 /
( ) 1 .

(1 )

)

/

g b

g b

r R R
r R

r R

R


 
   

 




                                    (107) 

At b gR r  this formula is transformed into (95). As we see, the lines of the 

asymptotes of the layers at the hyperbolic and elliptic velocities are also parallel to the 

worldline of the center, are spaced from each other almost equidistantly, condensing near 

the surface only. 

The moments of freezing of proper time on each layer ( )R  we find by substituting 

( )r R  in (34) - (35). For hyperbolic velocities this gives: 

3 1/2 3 1/

1/2
3/2 3/23/2

1/2

1/2 2 2

3/2 3/43/2

1/2

2

1/2

3 1/2 31/ 42 2 2 1/

1
(1 / ) (1 / )

1
(1 / ) (1

(1 / ) (1 / )
( ) 2

(1 / ) (1 / )1
ln

1 2 / )

g b g bb
g

g

g b g b

g b g b

g b g b

b

g

r R

r R r RR
R

r R R

r R r RR

r R

r r RRRr R


   
    
 

 
    

 
    

  

  
 

 
  

.

 
 
 
 

   (108) 

The moments of freezing of the center (0)  and the surface ( ) (0)bR    are equal 

to: 

  
Fig. 5. The OS worldlines of the dust star’s particles 

along the star’s diameter at the hyperbolic velocity 

and 3.5bR   at 0   (in units 
gr ) according Eqs. 

(85), (88) and (89). At large t the worldlines remain 

timelike, the surface freezes outside the gravitational 

radius, the internal layers freeze near own 

asymptotes given by Eq. (107). 

Fig. 6. The OS worldlines of the dust star’s 

particles along the star’s diameter at the elliptic 

velocity and 3.5bR   at 0   (in units 
gr ) 

according Eqs. (85), (88) and (90). At large t the 

worldlines remain timelike, the surface freezes 

outside the gravitational radius, the internal 

layers freeze near own asymptotes given by Eq. 

(107). 
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 

 

3/2
1/2

1/2 3/2 3/2

1/2

3/2
3/2 3/4

1/2 1

1/

2

2

/

(0) 2 (1 / ) (1 / )

1
ln (1 / ) (1 / ) ,

1

1
1 2

b
g b g b

g

b
g b g b

g

R
r R r R

r

R
r R r R

r


      

   

       









       (109) 

 

3/2
1/2

1/2

1/2

3/2
1/2

1/2 1

1 2

/

/

2

( ) 2 (1 / ) /

1
ln / (1 / ) .

1 2

b
g b g b g b

g

b
g b g b

g

R
R r R r R

r

R
r R r R

r

         

       




                             (110) 

For elliptic velocities, the freezing moments are given by the expression: 
1/2 1/23/2 1/2

1/2 1/2 1/2

2 3 1/2 3/2

( ) 1 arccos ,

(1 / ) , (1 / ) .

gb

g R R b

R g b g b

rR B B
R

r A A R

A r R R B r R



  
    

   

   

                       (111) 

The moments of freezing of the center (0)  and the surface ( ) (0)bR    are equal in 

this case to:  

 
3/2

1/2 1/2

1/2
(0) [ (1 )] arcsin( ) ,b

g

R
B B B

r
                                (112) 

1/2 1/2 1/23/2

1/2 1/2 1/2
( ) 1 arccos .

g g gb
b

g b b b

r r rR
R

r R R R


  
    

   

                      (113) 

Using the asymptotes of t: 

ln [exp( / ) 1] 1/ 4 ,
4

b
g g b

g

R
t r yr R

r

 
      

 

                          (114) 

for the dependence on t of the basic variables at large t we obtain: 

/
ln 1 (1 4 ) ,gt rgb

g b

rR
y e

r R

 
   

 
                                (115) 

1/2
/

1/2

,

(1 / )
1 (1 4 ) 1 .

(1 / )

gt rg b g

g R b

r R r
r R e

r R R





   
          

                   (116) 

In the limit t   the formulas (115) - (116) turn to (106)-(107). 

3.2. The interior metric and its asymptotes 

a. Parabolic velocities. 

In the OS exact solution, the components of the metric (75), taking into account (79) 

and (81), become: 
( , ) 1

,(1 / ) ,t R

g Re r r                                                                   (117) 

2 2 2

,( , )

2 2 3

, ,

[1 ( / 2 )(1 3 / )] 1
.

[1 ( / 2 )(1 / )] 1 /

g R bt R

g R b g R

r r R R
e

r r R R r r


 


  

                   (118) 

The line element, respectively, has the form: 
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2 2 2 2 2
,2 2 2

2 2 3

, , ,

[1 ( / 2 )(1 3 / )]
.

[1 ( / 2 )(1 / )] 1 / 1 /

g R b

g R b g R g R

r r R R dt dr
ds r d

r r R R r r r r

 
   

   
   

(119) 

On the surface 
bR R , this line element turns to the Schwarzschild line element (1). In 

the center of the star 0R r   the spatial metric is trivial (0, ) 1te  . 

   At 
gt r  the metric (117), taking into account (101), has the form: 

1
1

2 2
/( , )

2 2

1
1 4 3 ,

2

gt rt R

b b

R R
e e

R R







   
     
    

                          (120) 

or in a more compact form: 
/ 2 2

( , )

/ 2 2

8 3 /
.

8 3 3 /

g

g

t r

t R b

t r

b

e R R
e

e R R







 

 
                                     (121) 

At the center and on the surface its value is equal to: 
/( , )( ,0) 1, / 4.gb

t rt Rte e e
                                        (122) 

At t   the metric from (121) tends to: 
2 2

( , )

2 2

1 / 3
.

1 /

R b

b

R R
e

R R

  



                                             (123) 

At 
gt r the time component of the metric (75), taking into account (81) and (101), has 

the form: 

2
2 / /( , )

2

1
16 4 3

2

g gt r t rt R

b

R
e e e e

R

     
   

  

                             (124) 

or in the expanded form: 
/ 2 2 2

2 /( , )

/ 2 2

[8 (3 / )]
.

3(1 / ) / 8

g

g

g

t r
t rt R b

t r

b

e R R
e e

e R R








 

 
                               (125) 

At the center and on the surface its value is equal to: 
2 / /( , )( ,0) 24 , 4 .g gb
t r t rt Rte e e e

  
                                 (126) 

At t   the metric from (125) tends to: 
2 2 2

2 /( , )

2 2

(1 / 3 )
24 .

1 /

gt rR b

b

R R
e e

R R

  



                                   (127) 

b. Hyperbolic and elliptic velocities. 

In these cases, the components of the metric (83), taking into account (91) and (115), 

have the form: 

( , ) 1 ( , )

, ,2
(1 / ) , (1 / ).t R t R

g R g R

e
e r r e r R

t


                         (128) 

On the surface bR R  this metric turns to the Schwarzschild metric (1). At the center of 

the star 0R r   the spatial metric is trivial 
(0, ) 1te  . 

   At large t, the metric (128), taking into account (116), has the form: 
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1
1/2

/,( , )

1/2

,

(1 / )
1 1 (1 4 ) 1 .

(1 / )

gt rg R g b gR t

g R b

r r R r
e e

R r R R






   

     
   

         (129) 

At the center and on the surface its value is equal to: 
/( , )( ,0) 1, / 4.gb

t rt Rte e e
                                          (130) 

At t   the metric tends to its asymptote: 
1

1/2

,( , )

1/2

,

(1 / )
1 1 1 .

(1 / )

g R g b gR

g R b

r r R r
e

R r R R





 
   

    
   

                     (131) 

At large t the value of the time component of the metric (128) at the center and on 

the surface, by taking into account (91) and (130), becomes equal to: 
2 / /( , )( ,0) , 4 .g gb
t r t rt Rte e e e

  
                                 (132) 

Conclusion 

In the paper, the collapse of a homogeneous dust star and its structure at the given 

moment of the world time in the framework of the OS method are studied in all three special 

velocities - parabolic, hyperbolic and elliptic. The plots of the trajectories of the star's 

particles (Figs. 5-8) clearly show the internal structure of the dust star on the hypersurfaces 

of simultaneity. At large t, the worldlines of particles in all layers approach their 

asymptotes, which are placed almost equidistantly from the center and are condensed only 

near the surface. The surface asymptotically approaches the gravitational radius, always 

remaining outside of it. 

This shows that the frozen star picture refers not only to the surface, but also to the 

structure of the entire dust star. Due to the uniqueness and invariance of worldlines in 

general relativity, this picture also is unique and invariant. Unlike the widely accepted 

intuitive picture of collapse where the surface crosses the gravitational radius in the proper 

time, the picture of the structure and evolution of the star with asymptotically frozen layers 

will be reproduced in all correctly performed transitions to other frames of reference with 

any of their coordinates. 

Under the correct such transition from the viewpoint of general relativity, it is 

necessary to understand those values of coordinates which describe at any moment of 

cosmological time on the surface of the star only those events in the internal layers that are 

simultaneous with the world time moment on the surface. All other descriptions based on 

non-simultaneous events in different parts of the star are unphysical and play only an 

auxiliary role for the transition to a set of simultaneous events in the entire volume of the 

star. 

It is also important the fact that the worldlines of the star’s particles in the exact 

solutions of the Einstein equations obtained by the OS method cover every moment of the 

existence of these particles in the real world and therefore these solutions give a complete 

picture of the evolution of the star. The irreversible dilation of the proper times due to 

relativistic and gravitational time dilations is the objective physical phenomenon that stops 

all processes in the star, including the process of collapse itself. This specific and 

fundamental physical phenomenon basically distinguishes the collapse scenario of the 

Einstein gravity from the Newtonian one, where there is no such stopping mechanism. 

Thus, the collapse of the homogeneous dust star in general relativity in the exact 

solutions by the OS method does not lead to the black holes with a horizon on the 

gravitational radius and a singularity at the center, as it has been stated earlier from intuitive 

considerations, but at any finite moment of cosmological time leads only to the frozen star 
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or the frozar, an object having almost homogeneous and practically frozen internal 

structure with timelike worldlines of the particles of finite mass. 

Appendix 1. Parametrized form of the trajectory functions  

In the literature, it is widely used a parametrized solution for the trajectories of 

particles of the homogeneous dust star. Thus, for convenience of comparison and further 

using of the above presented results, below the solutions are presented also in the such 

parametrized form. 

a. Elliptic velocities. 

For solutions outside the star let us introduce a parametrization with ( )a a t , 

0 (0)a a :  

2

0 0sin , sin , (1 cos ) / 2, sin .r a R a a a f               (133) 

This gives: 

2 2(1 cos ) cos ( / 2), sin
2

g

R
r R F r R                                (134) 

and the trajectory equations (16) and (22) take the standard form (Landau & Lifshits, 1994; 

Mizner, Thorne, & Wheeler, 1973): 

( sin ),
2sin b

R
  


                                                                     (135) 

 
cot tan( / 2) 1

ln cot [ sin( )] .
cot tan( / 2) 2sin

b
b

g b b

t

r

 
   

  

 
    

  
    (136) 

Inside the star, the expressions for f and F have the form: 
2 2 3 6

,

03 3 3 3

sin sin
,

sin sin

g R

g g

b b b b

r R R
f r F r a

R R R

 

 
                                 (137) 

In (134), instead of r, we insert r  from (88) and instead of (136) we come to a more 

complicated expression. 

b. Hyperbolic velocities. 

In this case, the parametrization has the form: 
2

0 0sinh , sinh , (cosh 1) / 2, sinh .r a R a a a f              (138) 

This gives: 

2 2(cosh 1) sinh ( / 2), sinh
2

g

R
r R r R                               (139) 

and the trajectory functions outside the star (15) and (60) take the form: 

   1/2 1/2

0 0sinh 2 ln(1 2 ) ,
s

,
2sinh inhb b

R R
    

 
           (140) 

 

3/2
3/2

2

tanh( / 2) tanh 2 sinh
ln coth 2 .

tanh( / 2) tanh 2sinhg

t

r

   
 

  

    
     

   
    (141) 

Inside the star, the expressions for f and F have the form: 
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2 2 3 6
,

03 3 3 3

sinh sinh
, .

sinh sinh

g R

g g

b b b b

r R R
f r F r a

R R R

 

 
                              (142) 

In (139) instead of r, we insert r  from (88) and instead of (141) we come to a more 

complicated expression. 

Appendix 2. Derivation of the auxiliary function y  

a. Parabolic velocities. 

A solution of the equation (78): 
1/2

,( )' g Rr ry

y R
                                                   (143) 

we look for among the functions of the form 

( , ) ( ) ( , ),y R r A R B R r                                            (144) 

where A does not depend on r, and the derivative of B under R vanishes:  

' ' ' ' '.
B

y A B r A
r


   


                                        (145) 

This gives 

' ', .
B B

B r y r
r r

 
  

 
                                        (146) 

The diagonality condition (78) then takes the form 
1

'
' '

y B
A r rr

y r


 

  
 

                                             (147) 

from which it follows: 

,2' ' .
g RrB B

A r r
r R r

 
 

 
                                          (148) 

Since the left-hand side of (148) does not depend on r, the right-hand side must not 

contain r, which means that B has the form ( )B q R r  and from (145) we obtain for q:  

' ' ' ' 0.
B

B r q r qr
r


   


                                       (149) 

Taking into account ' /r r R , this equation and its solution have the form: 

' ' 1
, ln ln ln , .

q r w
q R w q

q r R R
                         (150) 

We find the constant w  from the matching on the surface. As it is clear from (52), on the 

surface we have ( / )gt M r r  and / gy r r , and therefore, by taking into account (149), 

we obtain: 

1
( , ) , , ( ) .b

b b

b g g b g

w r R w
y R r r w q R

R r r R r
                  (151) 

Thus, we obtain: 

, .b b

g g

w R R
q B qr r

R Rr Rr
                                     (152) 

Substituting this into (147), we obtain also:  
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2
,

2 2

1
' , ,

2

g R

b b

r R R
A q A p

R R R
                                    (153) 

where the constant p is also found from the matching on the surface / gy r r : 

1 1
( ) 0, .

2 2
bA R p p                                         (154) 

As a result, we obtain the final solution (Oppenheimer & Snyder, 1939):  
2

2

1
( ) 1 ,

2 b

R
A R

R

 
  

 
                                             (155) 

2

2

1
( , ) 1 .

2

b

b g

R R
y R r

R Rr


 
   

 
                                   (156) 

The derivatives of y are equal to: 
2

2 2 1/2

,

1
' ,

( )

b

b g b g R

R R R
y y r

R Rr R r r
                               (157) 

and the diagonality condition (142) is satisfied. 

b. Hyperbolic and elliptic velocities. 

In the diagonality condition (78) 
1/2

, 1/2

, ,

( )' '
(1 / ) ,

1 /

g R

g R g R

r ry rr
r R

y r R R r
   

 
                         (158) 

the solution for y, according to the OC method [4], we search among the functions having 

the form (143). This gives (144) - (145) and the equation (157) then takes the form 
1

,

' '
' ,

1 /g R

y B rr
A r

y r r R


 

  
  

                                       (159) 

from which it follows: 
2

,

, ,

'
' (1 / ) .

1 /

g R

g R g R

rr r B B
A r R

r R r R r r

 
  

   
                         (160) 

Since 'A  does not depend on r, the right-hand side of (159) does not depend on r 

also, and therefore 

( )
,

1 /

B q R

r r R




 
                                                 (161) 

ln(1 / ).
1 /

dr
B q qR r R

r R
   


                                   (162) 

From (145) it follows that:  

' ' 0,q r qr                                                       (163) 

and taking into account ' /r r R  we obtain: 

' 1
, ln ln ln , .

q w
q R w q

q R R
                                (164) 

Then we find the constant w  from the matching on the surface. It is clear from (22) and 

(60) that on the surface ( / )gt M r r  and / gy r r , which, taking into account (163), 

gives: 
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1
( , ) , , ( ) .b

b b

b g g b g

w r R w
y R r r w q R

R r r R r
                    (165) 

Hence we have: 

, ln(1 / ).b b

g g

w R R
q B r R

R Rr r
                                    (166) 

Substituting this into (159), we obtain: 

,

2

,

1 /1
' , ln .

1 / 2 1 /

g Rb

b g R g g b

r RR R
A A

R r R r r R


  

 
                      (167) 

Finally, substituting (165) and (166) in (143) we find the final solution:  
1/2

,

1/2

(1 / ) (1 / )
( , ) ln .

(1 / )

g Rb

g g b

r R r RR
y R

r r R


 
 


                         (168) 

The derivatives of y are equal to: 
2

2 2 1/2 1/2

, ,

1 1
' ' , .

1 / ( ) (1 / )b g R b g R

R R
y A y

R r R R rr r R
   

 
     (169) 

and their ratio satisfies the diagonality condition (158). 
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