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Symmetries of harmonic oscillator generating 
the zero-point and negative energies 

Zahid Zakir * 

Abstract 

The Hamiltonian of harmonic oscillator is symmetric under the replacement of 

canonically conjugate variables and a canonical transformation to ladder operators 

maintains this symmetry. The Hamiltonian is expressed through a symmetrized 

product of the ladder operators and, as a result, at quantization there arise a zero-

point energy. Therefore, for quantized fields, canonically conjugate variables of 

which enter into the Hamiltonian unsymmetrically, the zero-point energy could not 

arise. A new symmetry of harmonic oscillator is found: a wave equation and its 

solutions do not vary at a joint changing of signs of frequency, energy and mass of 

a particle. It is shown that the problem of the negative norm for negative-frequency 

states appears at taking positive mass at negative energy and, contrary, the 

problem disappears at taking the same sign of mass and energy as it is required by 

relativistic kinematics. In the nonrelativistic theory, considered as a limiting case of 

relativistic theory, the states of a particle with negative frequency, energy and mass 

are described consistently as evolving only backward in time and representing the 

states of its antiparticle with positive frequency, energy and mass evolving forward 

in time. For such charge-conjugation symmetric system of oscillators an extended 

space of states with generalized operators is constructed. 
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Introduction 

A quantized harmonic oscillator plays a key role in modern physics since 
various systems, particularly free relativistic fields, are quantized by analogy with it. 
Two properties of the harmonic oscillator have been exploited in quantum field theory 
(QFT) – a formalism of ladder operators and a zero-point energy for ground states. 
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However, it is wonderful that in QFT models the zero-point energy appeared due to a 
quite different reason than in the harmonic oscillator [1-3]. 

In quantum mechanics the zero-point energy of the oscillator formally follows 

from a symmetrized product of ladder operators and from the physical point of view it 

is required by the uncertainty relations. In contrast to these symmetrical and physical 

reasons, in QFT the zero-point energy usually appears at transition from the ladder 

operators for the negative-energy particles ( )a k , 
*( )a k  to the operators for the 

positive-energy antiparticles ( )b k ,
*( )b k , where ( , ) ,kk  k   

2 2

k m  k . 

In this connection it is interesting to understand a true origin of the zero-point 

energy in the quantized systems, particularly, a role of symmetry properties of the 

system generating or eliminating of it and how the negative-energy modes are 

related with the zero-point energy. 

In the first section of the paper the symmetry properties of the Hamiltonians 

of the quantized systems leading to the zero-point energy are considered. In the 

second section the quantum mechanics of the harmonic oscillator in the extended 

space of states including the negative-frequency modes is formulated. The similar 

methods in application to the relativistic fields are presented in the paper [4], where 

their efficiency for the solution of the zero-point vacuum energy problem is 

demonstrated. 

1. A symmetry leading to the zero-point energy 

1.1. The zero-point energy for an oscillating particle  

 The spectrum of a particle in the harmonic oscillatory potential contains a 

zero-point energy due to the uncertainty relations, i.e. due to a fundamental physical 

reason. In the formalism of the theory this physical requirement is realized across 

symmetry of the Hamiltonian under interchanging of canonically conjugate variables 

p  and 'x m x : 

  2 2 2 21 1
( ) ' .

2 2
H p m x p x

m m
       (1) 

Really, canonical transformations to ladder operators: 

 

 

 * *

1
( ) ( , ) ,

2

1
( ) ( , ) .

2

a a m m x ip
m

a a m m x ip
m

  


  


  

  

 (2) 

preserve that symmetry and lead to a symmetrized product of the ladder operators. 

Then, after a normal ordering of the symmetrized product, there appears the zero-

point energy: 

  * * *1 1
.

2 2
H a a aa a a 

 
    

 
 (3) 

However, as it is known, we can consider also non-symmetrical operator 

orderings of canonical variables, which are equivalent at the classical level, but lead 

to the different quantized Hamiltonians ( )H   and ( )H  : 
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    

    

*

( )

*

( )

1 1
, ,

2 2 2

1 1
, .

2 2 2

i
H a a m x ip m x ip H p x H

m

i
H aa m x ip m x ip H p x H

m

    

    





       

       

 (4) 

There both Hamiltonians are hermitian and, moreover, in 
( )H 

 the ladder 

operators are normal ordered and there no a zero-point energy. But they are 

unsymmetrical under direct interchanging of the canonically conjugate variables. 

However, the required symmetry may be restored if, in addition to the interchanging 

of the canonical variables, we interchange two types of Hamiltonians also: 

( ) ( )H H  , i.e. if we generalize the symmetry operation. 

In nonrelativistic quantum mechanics there is a physical reason why we must 

take as a physical Hamiltonian not 
( )H 

, but 
( ) / 2,H H    since only the last 

choice coincides with the uncertainty relations and experiments. But, for other 

oscillating systems, such as fields, we should take as a Hamiltonian H , when the 

system has the zero-point energy, or 
( )H 

, if the system does not contain the zero-

point energy. In any case the basic symmetries and the experiment allow one to 

select an admissible variant of the Hamiltonian [4]. 

1.2. The zero-point energy for quantized fields  

In QFT a direct analogy between the spectrum of harmonic oscillator and field 

modes there is only for the Hamiltonians symmetrized under the canonical variables. 

As it will be shown below, the positive- and negative-frequency contributions concern 

to different subspaces of the total Fock space. For this reason value of observables, 

having a direct physical meaning in own subspaces, at formal summing on both 

subspaces can distort a true physical picture of the system. For example, the 

products 
* 

    and 
*

    are inequivalent in any subspace and the scalar 

field’s Lagrangian: 

        * * 2 * *1
= .

2
L m 

              
 

 (5) 

leads to corresponding Hamiltonian symmetrized in both subspaces: 

 
* * * *1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .

2
kH a k a k a k a k a k a k a k a k          

k

 (6) 

After conventional replacements of the ladder operators for the negative-energy 

particles to the operators for positive-energy antiparticles: 

 
* *( ) ( ), ( ) ( )a k b k a k b k     (7) 

there appears the zero point energy 
 0

/ 2H  in both subspaces: 

    
* * * * * *

0

1
.

2
k kH a a aa bb b b a a b b H          

k k

 (8) 

Here the zero-point energy appeared due to the same reason as for harmonic 

oscillator, i.e. due to the symmetrized product of the creation-annihilation operators 

for particles and antiparticles. 
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However, in QFT usually we deal with the standard hermitian Lagrangians 

which for the charged scalar field has the form: 

   * 2 *= ,L m

       (9) 

and which is unsymmetrical under the direct interchanging of the fields 
*,  . As the 

result, in the Hamiltonian the creation-annihilation operators appear as normal 

ordered ones for both signs on energy: 

 
* *( ) ( ) ( ) ( ) .kH a k a k a k a k      

k

 (10) 

Usually the zero-point energy has been derived in this expression as the result of the 

transition from the operators for the negative-energy particles to the operators for the 

positive-energy antiparticles: 

 

 

* *

* *

0

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

k

k

H a k a k b k b k

a k a k b k b k H





    

    




k

k

 (11) 

Notice, that here the zero-point energy is related by the existence of the 

negative-frequency modes of the field, or antiparticles, without reference to the 

symmetries of the Lagrangian. In the next section we shall consider how the 

negative-frequency modes of the harmonic oscillator they can be taken into account 

rigorously and physically interpreted and then we can answer to a question about a 

relation between the zero-point energy and the negative-frequency states. 

2. The extended space of states for harmonic oscillator 

2.1. The time-reversal and the negative-frequency modes  

The Schrödinger equation for the wave functions ( , )x t  and 
*( , )x t  at 

representation of wave functions for stationary states in the form: 

 
( )* *

0 0

( , ) ( ) , ( , ) ( ) ,n niE t iE t

n n

n n

x t x e x t x e   
 

 

 

     (12) 

lead to the same equations for the stationary states: 

 
* *( ) ( ), ( ) ( ).n n n n n nH x E x H x E x      (13) 

Their solutions, obviously, also are identical, i.e. the spatial wave functions are real: 
*( ) ( )n nx x  .  

Thus, the equations for the stationary states and their solutions do not 

change at the following transformations: 

a) time reversal t t  and complex conjugation: 

 
*( , ) ( , ).x t x t    (14) 

But this symmetry is equivalent to two other similar symmetries: 

b) ,t t E E   and complex conjugation: 
*( , ) ( , )x t x t  ; 

c) ,t t E E  , but no complex conjugation. 

The last two symmetries have not been considered seriously because of the 

appearance of the negative energy states. However, a non-relativistic limit of 

relativistic theories contains such states which then can be transformed into the 
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states of antiparticles. Therefore, the negative energy solutions should be considered 

for non-relativistic wave equations also. 

The case of the harmonic oscillator is especially important because of the 

zero-point energy in QFT has been associated with the transition from the negative-

frequency operators for particles to the positive-frequency ones for antiparticles. For 

this reason below we will consider the role of negative-frequency modes in the 

oscillatory spectrum also. 

The negative-frequency modes of the oscillator have been studied in the early 

period of QFT [1-3]. However, because of the introduction of various artificial 

assumptions, particularly, negative probabilities, these ideas have been considered 

as attempts to go beyond the standard principles of quantum mechanics. Below it will 

be shown that such modes can be consistently described and explained without 

additional hypotheses. 

2.2. A symmetry between positive- and negative-frequency modes 

At quantization of fields to a backward in time propagating particle there 

correspond a negative-energy mode, which means that in a rest frame a negative 

mass also. Therefore, in the non-relativistic limit of the oscillating particle, having an 

antiparticle, it is necessary to include into the theory of harmonic oscillator the states 

with negative energy and mass also. 

The oscillatory Hamiltonian (1) describes oscillations with both signs on 

frequency   and changes a sign only at changing of a sign on mass m m . At 

the same time, the energy of the quantized oscillator: 

 
1

2
nE n

 
  

 
 (15) 

changes a sign only at the changing a sign on frequency   . But, in the case 

of the non-relativistic oscillator, a simple changing a sign on mass or frequency 

separately leads to inadmissible changing of system’s properties, and many attempts 

in this direction have not led to the physically meaningful results. 

However, this problem may be simplified and simply solved due to the 

existence of a new symmetry. At the combined changing of the signs on frequency, 

energy and mass: 

 , , ,n nE E m m     (16) 

the wave equations and their solutions remain unchanged. Really, the wave 

equations for the stationary states: 

 

2
2 2

2
2 ( ) 0,n

n n

d
mE m x

dx


       (17) 

and their solutions: 

  
2

1/4 1

2
1

( )
2 !

m x

n n
n

m
x e H m x

n


 



 
  
 

 (18) 

contain only paired products m  and nmE , so that at the combined changing of the 

signs on m ,   and nE  they remain unchanged. 

The corresponding ladder operators (2), lowering or raising the energy of the 

system, do not vary at the combined changing the signs on the frequency and mass: 
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* *( , ) ( , ), ( , ) ( , )a m a m a m a m          (19) 

Therefore, the Hamiltonian for the negative-frequency modes will be exactly the 

same as for the positive-frequency ones, but with the opposite sign on frequency. At 

the quantization, from the commutation relations for the coordinate and momentum 

follow the commutators: 

  * * *( ), ( ) 1, ( ), ( ) ( ), ( ) 0.a a a a a a                     (20) 

As the result, the Hamiltonian and the number operator  N   take the form: 

 

* *

* *

*

1
( ) ( ) ( ) ( )

2

1
( ) ( ) ( ) ( ) ,

2

( ) ( ) ( ).

H a a a a

a a a a

N a a

    

    

  

    

       

   

 (21) 

But, there appear apparent difficulties since the wave functions of these new 

negative-frequency levels are unorthogonal to the wave functions of the positive-

frequency ones and also there appear non-zero commutators of the positive-

frequency operators with the negative-frequency ones. All these are, certainly, 

inadmissible, since lead to the mixing of the different frequency sign states and to the 

instability of the system. 

Nevertheless, as it will be shown below, at more adequate representation of 

the states the wave functions and the operators of two kind modes of oscillator in fact 

are orthogonal and the different frequency sign operators commutate. 

For this purpose we enter the projection operators P  separating the states 

with the positive and negative energies accordingly: 

 ( ) ( ), ,n n n nP P         (22) 

which have usual properties: 

 
2 1, , 0.P P P P P P P P

            (23) 

A definite matrix representation of such projection operators will be considered in the 

next section, but here we will use their general properties only. 

As the results of such projecting, the wave functions 
( )n 

 and 
( )n 

 turn 

out to be normalized with a positive norm and the different frequency sign wave 

functions turn out to be orthogonal: 

 ( ) '( ) ' ( ) '( ), 0,n n nn n ndx dx     

      (24) 

where 
* 1

( )n nP  

  . By means of these projection operators we can define the 

positive and negative frequency sign ladder operators also: 

 
1 1, .a P aP a P a P   

        (25) 

Thus, the Hamiltonian and the number operators N  take the form: 

 
 

1
,

2

.

H H H a a a a a a a a

N a a

    

         



  

           



 (26) 
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By using (20) we obtain the commutators for the same frequency sign ladder 

operators: 

  , , , , 0,a a P a a a a  

      
          (27) 

and, which is very important, the vanishing commutators for the different frequency 

sign operators: 

  , , , 0.a a a a a a  

  
          (28) 

As the result, the Hamiltonian has the form: 

 
1 1

.
2 2

H a a P a a P  

     

   
      

   
 (29) 

Thus, full spectrum of the oscillator now includes not only the positive, but the 

negative energies also. There the zero-point energy appears in both sectors, and it is 

related only by the presence in the Hamiltonian (26) of the symmetrized products of 

the same frequency sign ladder operators. 

2.3. The extended space of states and generalized ladder operators  

Thus, for the oscillating particle there are two modes of oscillations - with 

positive frequency, mass and energy, and with their negative values. Since now the 

projected wave functions of these two modes ( ) '( ),n n    are orthogonal, we can 

embed them into two different Fock spaces, as describing two different particles. A 

direct sum of these spaces then forms an extended space of states, which 

represents then a total space of states for the system of the oscillating particle and 

antiparticle in a non-relativistic limit. 

The generalized wave functions of harmonic oscillator, containing both 

modes, we can represent in the form: 

  * *

, ' ' , '

'

, .
n

n n n n n n

n


 


  

     
 

 (30) 

The projection operators then can be taken in the matrix representation: 

 
1 0 0 0

, ,
0 0 0 1

P P 

   
    
   

 (31) 

which gives: 

 ( ) , ' '( ) , '

'

0
, .

0

n

n n n n n n

n

P P



   

  
          

   
 (32) 

The generalized wave functions ( )n   are normalized for each mode, while the 

functions of the different frequency sign modes are orthogonal: 

 
( ) '( ) '

( ) '( )

,

0,

n n nn

n n

dx

dx



 





  

  




 (33) 

Further, in the given representation the ladder operators ,a a

   also are 2×2 

matrices: 
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*

*

( ) 0 ( ) 0
, ,

0 0 0 0

0 0 0 0
, .

0 ( ) 0 ( )

a a
a a

a a
a a

 

 



 



 

  
    
   

   
    

    

 (34) 

They act on the generalized wave functions as: 

 

1
( ) 1,( )

( ) 1,( )

0
,

0 0 0 0 0

1 ,

n n n
n n

n n

a a n
a n

a n

   
   



   

     
          

      

   

 (35) 

and also: 

 
'( ) ' 1,( )

' ' ' 1

'( ) ' 1,( )

00 00 0
' ,

0 '

' 1 .

n n

n n n

n n

a n
aa n

a n

  
   





   

     
            

      

   

 (36) 

The ground state: 

 
0( )0

0,0

0( )0

( , )

( , )

m

m

 

 





  
     

    
 (37) 

is defined now by two relations: 

 

0( )1

0,0 0,0

0,0

0( )

( )
0,

0

0
0.

( )

a
a P aP

a
a

 

 



  





 
     

 

 
   

 

 (38) 

Thus, for the positive energy oscillations the ground state 
0( ) 

 is stable 

since the direct transitions from it to the negative energy states impossible. The new 

one is the same situation for the negative frequency oscillations, where the ground 

state 
0( ) 

 also is stable in the sense that the direct transitions from it to the positive 

energy states are impossible (the ladder operator ( )a    raises the energy of a 

state). Moreover, now the transitions between the positive energy levels carry out 

only the positive energy quanta, while between the negative energy levels – only the 

negative energy quanta. The problems with the stability of the negative energy states 

appeared only if one illegally supposes that the transitions between such states occur 

by emitting the positive-energy quanta. If in an interaction vertex there are states of 

both signs of frequency, it is necessary to transfer all such states on the same sign of 

frequency and only after that it is possible to conclude about balance of energies in 

that vertex. 

The Hamiltonian also has the matrix form: 

 

*

*

1 0( ) ( ) 0
.

0 120 ( ) ( )

a a
H

a a

  


 

   
    

     
 (39) 
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The number operators N , defined in (26), commutate with the Hamiltonian, and 

numbers of particles of each sign on energy conserve separately: 

 , 0.N H
     (40) 

Therefore, in contrast to the standard oscillator, in the system of two types of 

oscillators there are two conserving quantum numbers. Their combinations give us 

an operator of total number of quanta: 

 ,N N N a a a a 

          (41) 

and an operator of the “quasi-charge” of the system: 

 .Q N N a a a a 

          (42) 

The time reversal in this case, as it was shown above, is equivalent to the 

change of a sign on frequency and after that the total number of quanta N does not 

vary, whereas the “quasi-charge” Q, if it is non-zero, changes a sign. 

2.4. Reinterpretation of negative-frequency states 

In the previous sections we considered the negative- and positive-frequency 

modes in an equal manner. It is reasonable only while we do not choose a definite 

direction for temporal evolution. Let this direction is chosen as a positive one when 

only the positive-energy states are admissible. 

Then, the negative-energy states cannot be simply rejected and in the 

consistent nonrelativistic theory, considered as a limiting case of the relativistic 

theory, they should be transformed into the positive-energy states of antiparticles 

with the ladder operators b  and b


. The corresponding Hamiltonian of the system 

of oscillating particles and antiparticles then has the form: 

 

( ) ( )

*

*

1 1

2 2

1 0( ) ( ) 0
.

0 120 ( ) ( )

a bH a a P b b P

a a

b b

 

  


 

 

     

   
       

   

   
    

  

 (43) 

 If a harmonic potential acts on the particle and antiparticle similarly, i.e. the 

potential does not depend on a sign of charge, two kinds of oscillatory quanta in fact 

become indistinguishable. Under these conditions the Hamiltonian of the system has 

a standard form with one type quantum and with the zero-point energy: 

 
*

1 01
( ) ( ) .

0 12
H a a  

  
    

  
 (44) 

Thus, the symmetry between the positive- and negative-frequency states of 

the harmonic oscillator represents in the non-relativistic limit a combined symmetry 

under the time-reversal and the charge conjugation. 

 Conclusion 

Thus, we conclude that the zero-point energy formally follows only from the 

symmetry between the canonically-conjugate variables in the Hamiltonian and it does 

not depend on the existence of negative-frequency modes. Moreover, the negative-

frequency modes also have the zero-point energy which after the time reversal 

appears as the zero-point energy of oscillating antiparticles. 
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There is a new symmetry of observables and states of the harmonic oscillator 

under the joint changing of signs of frequency, energy and mass of an oscillating 

particle. There the negative mass is only (relativistic) negative energy of the particle 

in its rest frame. At taking into account this symmetry the norm of the negative-

frequency states becomes positive. 

The states of the particle with negative frequency, energy and mass should 

be interpreted as the states of the antiparticle with positive frequency, energy and 

mass. Therefore, the quantization of the harmonic oscillator by taking into account its 

symmetry properties allows one to describe consistently the total spectrum of states 

of the oscillating particle and antiparticle without any new hypothesis. 

However, in the systems with a Hamiltonian without such symmetry between 

the canonically-conjugate variables, the direct analogy to the harmonic oscillator in 

the question about the zero-point energy is incorrect. It concerns the quantized fields 

with the standard Hamiltonians also, which are hermitian, but unsymmetrical under 

the interchanging of the canonically-conjugate variables. The fact that the quantized 

fields with the standard (non-symmetrized) Hamiltonians do not contain the zero-

point energy, will be shown in the next paper [4]. 
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